

FCC-ee Status

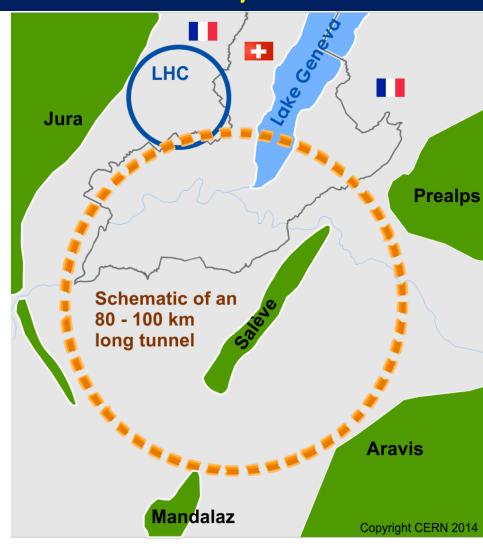
Mogens Dam
Niels Bohr Institute
Copenhagen University
For the FCC-ee Study Group

Hong Kong, 21-24 January, 2019

Picture and slide layout, courtesy Jörg Wenninger

Future Circular Collider Study

International FCC collaboration to study (since 2014)

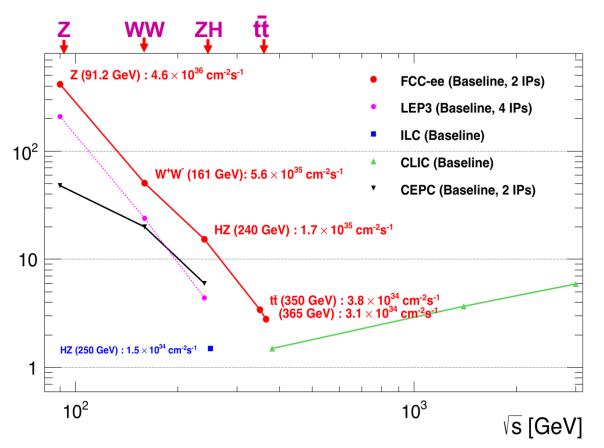

- ~100 km tunnel infrastructure in Geneva area, linked to CERN
- Ultimate goal: ≥ 100 TeV pp-collider
 (FCC-hh)
 ≥16 T magnets
- → defining infrastructure requirements

Two possible first steps:

- e^+e^- collider (FCC-ee) High Lumi, E_{CM} = 90-400 GeV
- HE-LHC: 16 T ⇒ 27 TeV
 in LEP/LHC tunnel

Possible addition

p-e (FCC-he)


FCC CDRs available at

http://fcc-cdr.web.cern.ch/

-uminosity $[10^{34} \text{ cm}^{-2}\text{s}^{-1}]$

EW factories: Energies and luminosities

The FCC-ee offers the largest luminosities in the 88 \rightarrow 365 GeV \sqrt{s} range

Ultimate statistics/precision:

- 100 000 Z / second
 - ◆ 1 Z / second at LEP
- 10 000 W / hour
 - ◆ 20 000 W at LEP
- 1 500 Higgs bosons / day
 - ◆ 10 times ILC
- in each detector

PRECISION and SENSITIVITY to rare or elusive phenomena

Design with 4 IPs to be investigated

- Experience from LEP3 study: Luminosity per IP not much affected
- Approaching a doubling of total luminosity!

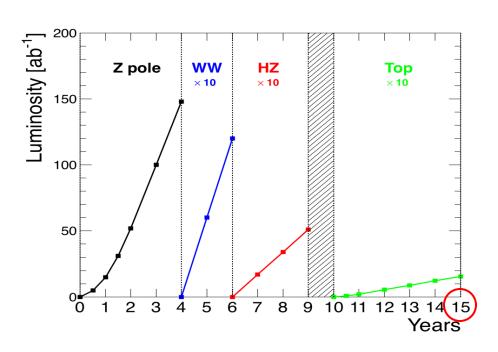
The FCC-ee discovery potential (excerpt)

- ◆ EXPLORE the 10-100 TeV energy scale
 - □ With precision measurements of the properties of the Z, W, Higgs, and top particles
 - ❖ Up to 20-50-fold improved precision on ALL electroweak observables (EWPO)
 - m_z , m_W , m_{top} , Γ_z , $\sin^2 \theta_w^{eff}$, R_b , $\alpha_{OED}(m_z)$, $\alpha_s(m_z, m_W, m_\tau)$, top EW couplings ...
 - Up to 10-fold more precise and model-independent Higgs couplings measurements
- DISCOVER that the Standard Model does not fit
 - □ NEW PHYSICS! Pattern of deviations may point to the source.
- ◆ DISCOVER a violation of flavour conservation / universality
 - □ Examples: $Z \rightarrow \tau \mu$ in 5×10^{12} Z decays; or $\tau \rightarrow \mu v / \tau \rightarrow ev$ in 2×10^{11} τ decays; ...
 - □ Also B⁰ → $K^{*0}\tau^+\tau^-$ or $B_s \to \tau^+\tau^-$ in 10^{12} bb events
- ◆ DISCOVER dark matter as invisible decays of Higgs or Z
- ◆ DIRECT DISCOVERY of very-weakly-coupled particles
 - □ in the 5-100 GeV mass range, such as right-handed neutrinos, dark photons, ALPs, ...
 - Motivated by all measurements / searches at colliders (SM and "nothing else")

FCC-ee is not only α Higgs factory. Z, WW, and tt factories are important for discovery potential

First look at the physics case of TLEP https://arxiv.org/abs/1308.6176 (Aug. 2013)

arXiv:1512.05544


arXiv:1603.06501

arXiv:1503.01325

The FCC-ee operation model and statistics

◆ 185 physics days / year, 75% efficiency, 10% margin on luminosity

Working point	Z, years 1-2	Z, later	ww	HZ	tt threshold	and above
√s (GeV)	88,	91, 94	157, 163	240	340 – 350	365
Lumi/IP (10 ³⁴ cm ⁻² s ⁻¹)	100	200	25	7	0.8	1.4
Lumi/year (2 IP)	24 ab ⁻¹	48 ab-1	6 ab ⁻¹	1.7 ab ⁻¹	0.2 ab ⁻¹	0.34 ab ⁻¹
Physics goal	150	ab ⁻¹	10 ab ⁻¹	5 ab ⁻¹	0.2 ab ⁻¹	1.5 ab ⁻¹
Run time (year)	2	2	2	3	1	4

Total: 15 years

Event statistics

$$5 \times 10^{12} e^{+}e^{-} \rightarrow Z$$
 $10^{8} e^{+}e^{-} \rightarrow W^{+}W^{-}$
 $10^{6} e^{+}e^{-} \rightarrow HZ$
 $10^{6} e^{+}e^{-} \rightarrow t\bar{t}$

√s precision

100 keV 300 keV 1 MeV

2 MeV

Important features for precision measurements

Statistics

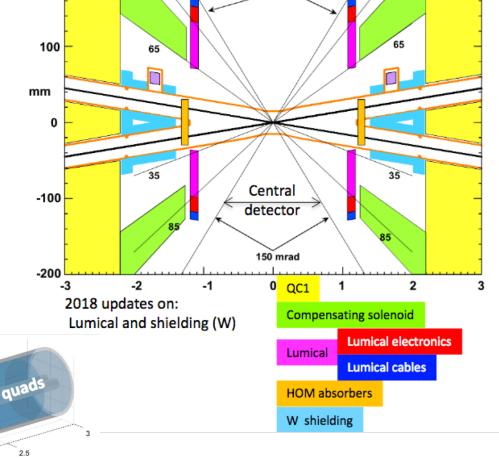
- □ Very high statistics at the Z pole (70 kHz of visible Z decays)
- □ Beam-induced background are mild compared to linear colliders, but not negligible
 - Readout must be able to cope with both
 - CW running imposes constraints on detector cooling

Luminosity measurement

- □ Aim at 0.01% from small angle Bhabhas
 - Requires μm precision for LumiCal
 - ❖ Requires measurement of outgoing e[±] deflection from the opposite bunch
- \square Need to study e⁺e⁻ $\rightarrow \gamma \gamma$ to possibly approach 0.001%
- ◆ Vs calibration and measurement of Vs spread
 - □ 50 keV "continuous" E_{BFAM} measurement with resonant depolarization
 - Powerful cross checks from di-muon acollinearity and polarimeter/spectrometer
 - * Requires muon angle measurement to better than 100 μrad

◆ Flavour tagging

- □ Small beam pipe radius: Vertex detector 1st layer at 17 mm.
 - * Impact parameter resolution: 3-5 μ m (c τ = 89 μ m for τ and more for Bs)
 - New CEPC studies claim Purity × Efficiency ~ 97% for H → bb. And at FCC-ee ?


Interaction Region Layout (MDI)

Unique and flexible design at all energies

- $\Box L^* = 2.2 \text{ m}$
 - Acceptance: 100 mrad
- Solenoid compensation scheme
 - ⋆ Reduce $ε_y$ blow-up ⇒ B_{Detector} ≤ 2T
- Beam pipe

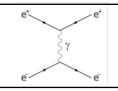
Mogens Dam / NBI Copennagen

- Warm, liquid cooled (~SuperKEKB)
- Be in central region, then Cu
- ❖ R = 15 mm in central region
 - 1st vertex detector layer 17 mm from IP
- SR masks, W shielding
- Mechanical design and assembly concept
 - Under engineering study

150 mrad

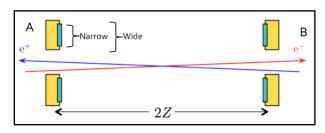
screening

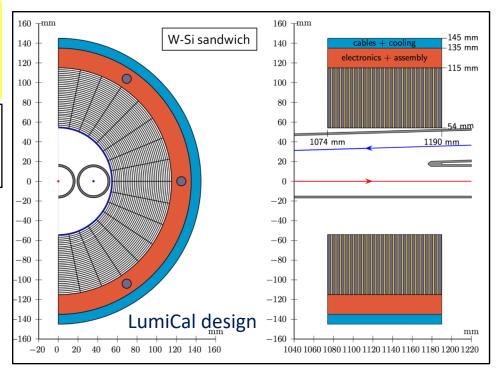
M. Sullivan



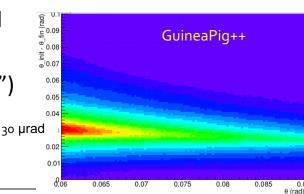
Luminosity Measurement

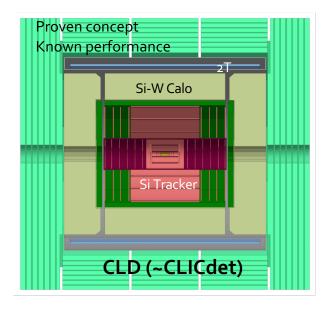
Ambitious goal:

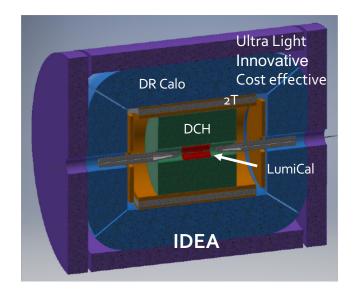

- Absolute to 10⁻⁴
- Relative (energy-to-energy point) to 10⁻⁵


Small angle Bhabha scattering. Very strongly forward peaked

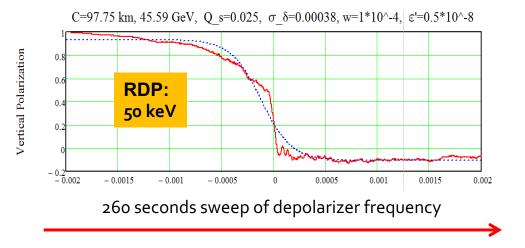
Monitors centered around outgoing beam line

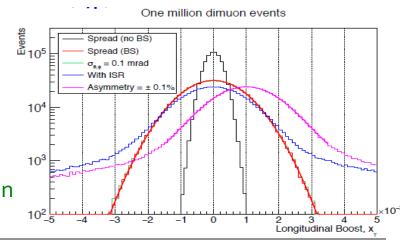

-- micron level precision needed


- Theory: Now at 3.8×10^{-4} ; theory friends foresees that 1×10^{-4} will happen
- arXiv:1812.01004]


- Backgrounds: have been studied and seem to be under control
 - □ Only "incoherent pair production" starts to pop up at tt energies
- Electromagnetic focussing of Bhabhas (similar to "pinch effect")
 - \Box average focussing of 30 µrad: 15 × 10⁻⁴ effect on acceptance
 - □ under study...

FCC-ee detector design concepts




- ◆ Two designs studied so far
 - □ Has been demonstrated that detectors satisfying the requirements are feasible
 - Physics performance, invasive MDI, beam backgrounds
- ◆ Next: more complete studies, with full simulation
 - □ Towards 4++ detector proposals by ~2026
 - Light, granular, fast, b and c tagging, lepton ID and resolutions, hadron ID
 - Cost effective
 - Satisfy constraints from interaction region layout

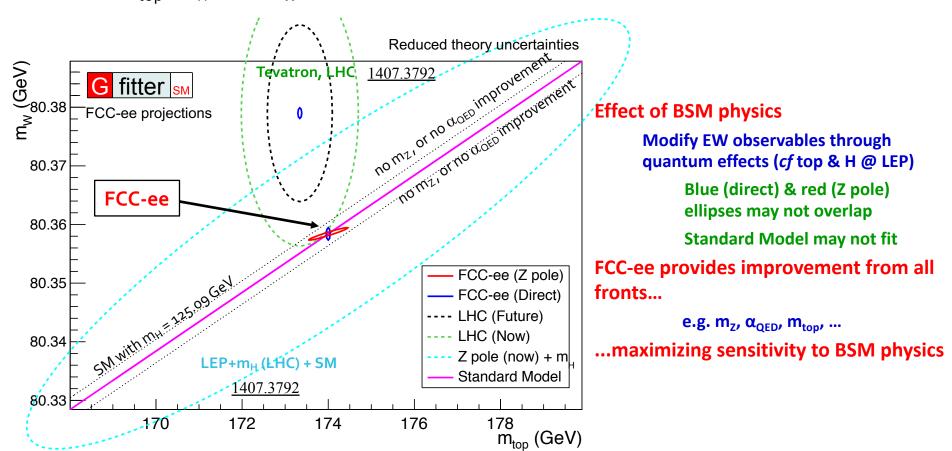
Beam Polarization and Energy Calibration

- Simulation show transverse polarization at the Z (wigglers) and WW energies
 - □ Energy calibration by resonant depolarization every 10 mins on pilot bunches
 - *** UNIQUE TO CIRCULAR COLLIDERS**

- ❖ Total √s uncertainty of 100 keV @ Z pole, and 300 keV at the WW threshold
- ◆ Energy spread (~100 MeV) will be measured
 - □ From $e^+e^- \rightarrow \mu^+\mu^-$ longitudinal boost
 - ❖ 10⁶ events every 4 mins @ Z pole
 - Continuous 35 keV precision on $\delta\sqrt{s}$
 - ❖ Also measures $\Delta E = E^+ E^-$ to similar precision

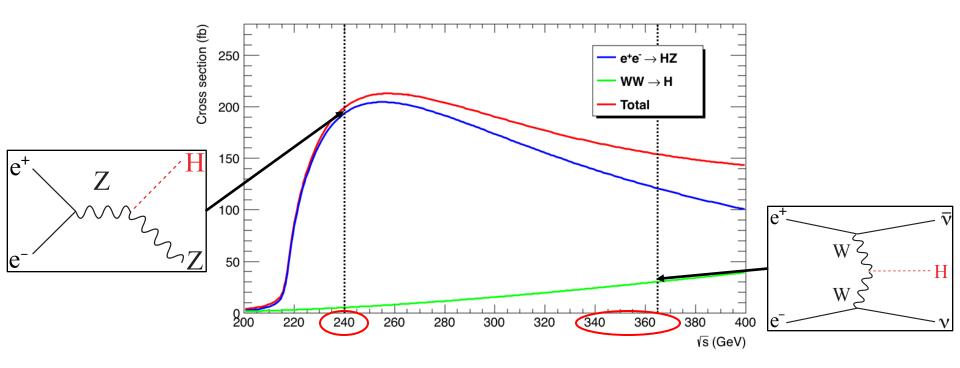
Sample of EW observables, experimental precisions

Observable	Measurement	Current precision	FCC-ee stat.	FCC-ee syst .	Dominant exp. error
m (ka)()	7 Linashana		_		·
m _z (keV)	Z Lineshape	91187500 ± 2100	5	< 100	Beam energy
Γ _z (MeV)	Z Lineshape	2495200 ± 2300	8	< 100	Beam energy
R _I (×10 ³)	Z Peak ($\Gamma_{had}/\Gamma_{lep}$)	20767 ± 25	0.06	0.2-1	Detector acceptance
R _b (×10 ⁶)	Z Peak ($\Gamma_{ m bb}/\Gamma_{ m had}$)	216290 ± 660	0.3	< 60	$g \rightarrow bb$
N _v (×10³)	Z Peak (σ _{had})	2984 ± 8	0.005	1	Lumi measurement
sin²θ _W ^{eff} (×10 ⁶)	A _{FB} ^{μμ} (peak)	231480 ± 160	3	2-5	Beam energy
$1/\alpha_{QED}(m_Z)$ (×10 ³)	A _{FB} ^{μμ} (off-peak)	128952 ± 14	4	<1	Beam energy
$\alpha_{\rm s}({\rm m_Z})~(imes 10^4)$	R _I	1196 ± 30	0.1	0.4-1.6	Same as R _I
m _w (MeV)	WW Threshold scan	80385 ± 15	0.6	0.3	Beam energy
Γ _W (MeV)	WW Threshold scan	2085 ± 42	1.5	0.3	Beam energy
N _v (×10³)	$e^+e^- \rightarrow \gamma Z, Z \rightarrow \nu \nu, II$	2920 ± 50	o.8	small	?
$\alpha_{\rm s}({ m m_W})$ (×10 ⁴)	$B_I = (\Gamma_had/\Gamma_lep)_W$	1170 ± 420	2	small	CKM Matrix
m _{top} (MeV)	Top Threshold scan	173340 ± 760 ± 500	17	< 40	QCD corr.
Γ_{top} (MeV)	Top Threshold scan	?	45	< 40	QCD corr.
λ_{top}	Top Threshold scan	$\mu = 1.28 \pm 0.25$	0.10	< 0.05	QCD corr.
ttZ couplings	√s = 365 GeV	± 30%	0.5 – 1.5%	< 2%	QCD corr


WW thresh.

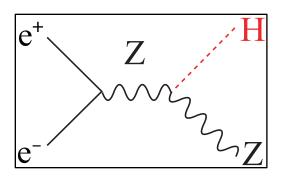
tt thresh.

Combination of EW measurements

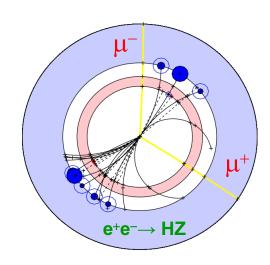

◆ With m_{top}, m_H and m_W known, the standard model has nowhere to go

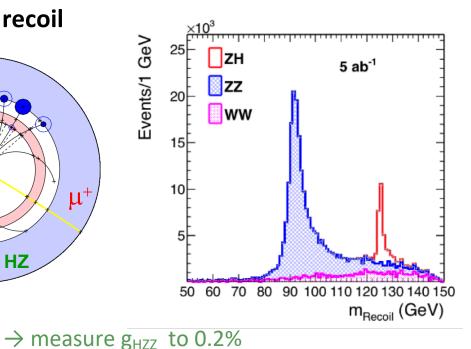
- □ Precision of theory predictions needs to improve for full sensitivity to new physics
 - higher order calculations needed

FCC-ee as a Higgs factory



- ♦ Higgsstrahlung (e⁺e⁻ \rightarrow ZH) event rate largest at \sqrt{s} ~ 240 GeV : σ ~ 200 fb
 - □ 10⁶ e⁺e⁻ \rightarrow ZH events with 5 ab⁻¹ cross section predicted with great accuracy
 - Target: (few) per-mil precision, statistics-limited
 - ❖ Complemented with 200k events at $\sqrt{s} = 350 365$ GeV
 - Of which 30% in the WW fusion channel (important for the Γ_H precision)




Higgs: Absolute couplings and width

◆ Higgs tagged by a Z, Higgs mass from Z recoil

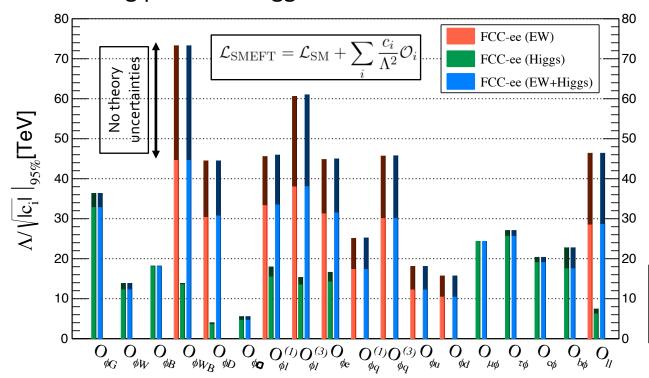
$$m_H^2 = s + m_Z^2 - 2\sqrt{s}(E_+ + E_-)$$

- □ Total rate $\propto g_{HZZ}^2$
- □ ZH \rightarrow ZZZ final state $\propto g_{HZZ}^4 / \Gamma_H$
- \rightarrow measure $\Gamma_{\rm H}$ to a couple %
- □ ZH \rightarrow ZXX final state $\propto g_{HXX}^2 g_{HZZ}^2 / \Gamma_H$ \rightarrow measure g_{HXX} to a few per-mil / per-cent
- □ Empty recoil = invisible Higgs width; Funny recoil = exotic Higgs decays
- ◆ Note: The HL-LHC is a great Higgs factory (10⁹ Higgs produced) but ...
 - $\Box \sigma_{i \to f}^{\text{(observed)}} \propto \sigma_{prod} (g_{Hi})^2 (g_{Hf})^2 / \Gamma_H$
 - * Difficult to extract the couplings : σ_{prod} is uncertain and Γ_{H} is largely unknown
 - Must do physics with ratios or with additional assumptions.

Result of the "kappa" fit

◆ Relative precisions for HL-LHC and the FCC-ee

Collider	HL-LHC		FCC-ee	
Luminosity (ab-1)	3	5 @ 240GeV	+1.5 @ 365GeV	+HL-LHC
Years	25	3	+4	-
$\delta\Gamma_H/\Gamma_H$ (%)	SM	2.7	1.3	1.1
$\delta g_{HZZ}/g_{HZZ}$ (%)	1.3	0.2	0.17	0.16
$\delta g_{HWW}/g_{HWW}$ (%)	1.4	1.3	0.43	0.40
$\delta g_{Hbb}/g_{Hbb}$ (%)	2.9	1.3	0.61	0.55
$\delta g_{Hcc}/g_{Hcc}$ (%)	SM	1.7	1.21	1.18
$\delta g_{Hgg}/g_{Hgg}$ (%)	1.8	1.6	1.01	0.83
$\delta g_{H\tau\tau}/g_{H\tau\tau}$ (%)	1.7	1.4	0.74	0.64
$\delta g_{H\mu\mu}/g_{H\mu\mu}$ (%)	4.4	10.1	9.0	3.9
$\delta g_{H\gamma\gamma}/g_{H\gamma\gamma}$ (%)	1.6	4.8	3.9	1.1
$\delta g_{Htt}/g_{Htt}$ (%)	2.5	_	_	2.4
BR _{EXO} (%)	SM (0.0)	<1.2	<1.0	<1.0


Model-independent

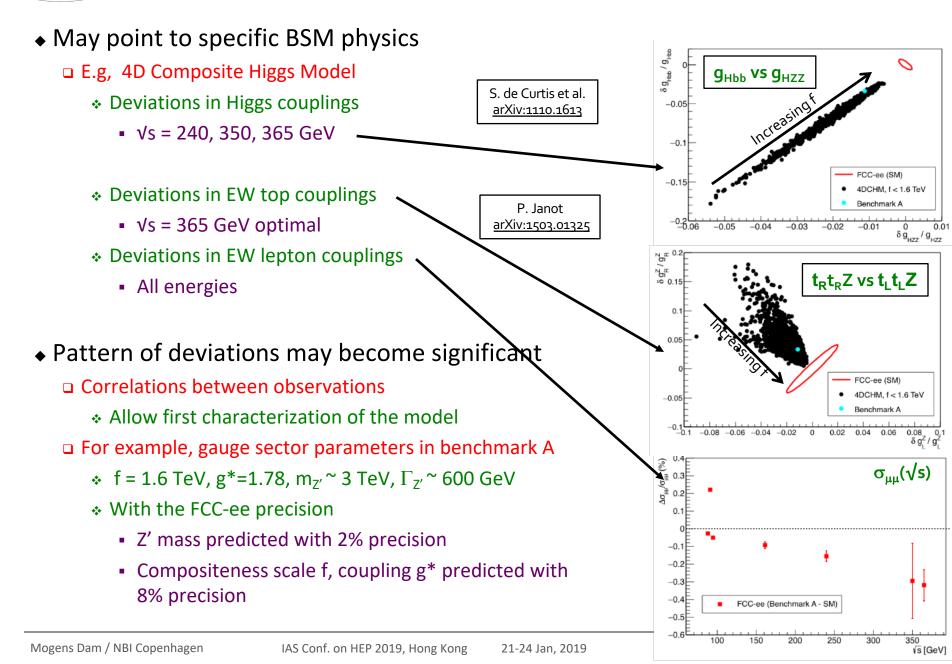
- □ FCC-ee precision better than HL-LHC by large factors (copious modes)
 - ❖ With no need for additional assumptions best on the e+e- collider market
- □ It is important to have two energy points (240 and 365 GeV)
 - ❖ Combination better by a factor 2 (4) than 240 (365) GeV alone
- \Box (HL-)LHC measures the σ_{ttH} , but requires assumptions for the g_{Htt}
 - ❖ Absolute g_{Htt} measurement in a combination with FCC-ee (precision: 2.4%)

Precision ⇔ Discovery

Combining precision Higgs and EW measurements in SMEFT

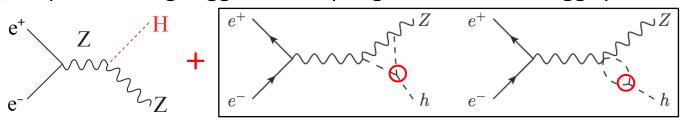
Deviating operators may point to the new physics to be looked for at the FCC-hh

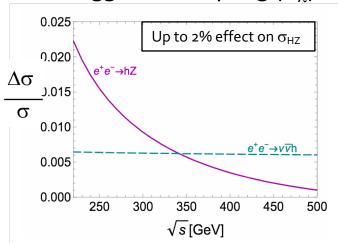
- \Box Higgs and EWPO measurements are well complementary (b,c, τ PO to be added)
- □ EWPO are more sensitive to heavy new physics (up to 50-70 TeV)
 - ❖ Sensitivity was at the level of up to ~5 TeV at LEP
- □ Larger statistics pays off for Higgs measurements (4 IPs ?)
- □ Further improvement in theory predictions pays off for EWPO measurements

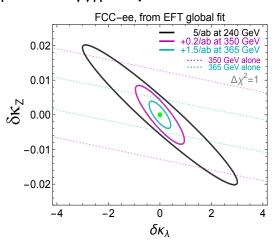

Precision of theory predictions

- ◆ Improving the precision of EW and QCD calculations for the FCC
 - □ Is a great challenge (exponentially growing number of diagrams with # loops)
 - □ Has discovery potential (see previous slide)
 - □ Is therefore recognized as strategic
 - Included in the FCC-ee CDR volume as a target for "Strategic R&D"
- ◆ First workshop on "Methods and tools" in January 2018
 - 33 participants
 - □ Produced a 250+ pages proceedings!
 - Conclusion of the workshop
 - * We cannot promise, but yes, we can do it!
 - * Requires ~500 person-year over the next 20 years
- ◆ Workshop series continued in January 2019
 - □ Topics cover the whole FCC-ee programme, 106 registered participants
 - * Z, W, Higgs, top, b, c, QED, Monte Carlo, software, and detector technologies

Standard Model theory for the FCC-ee (2018) J. Gluza et al., https://arxiv.org/abs/1809.01830


Pattern of deviations


Higgs self-coupling at FCC-ee

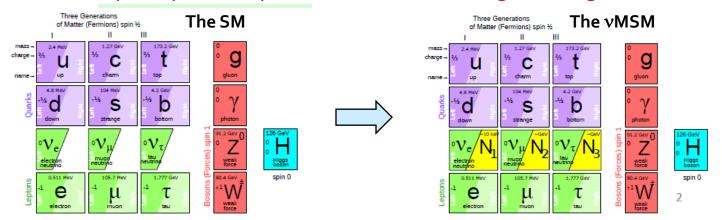

- ◆ FCC-ee does not produce Higgs pairs, from which self coupling can be extracted
- ◆ But, loops including Higgs self coupling contribute to Higgs production

M. McCullough arXiv:1312.3322

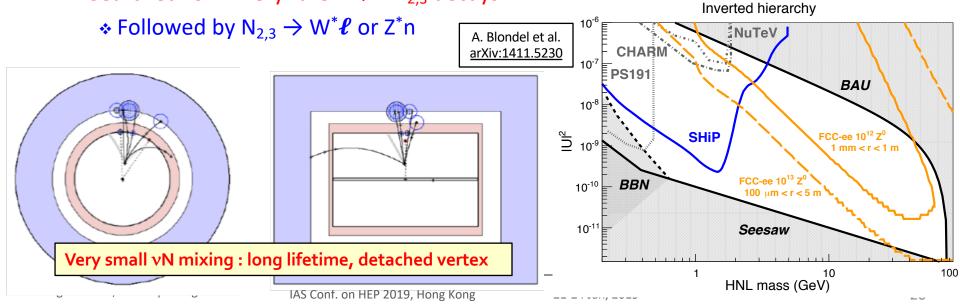
• Effect of Higgs self coupling (κ_{λ}) on σ_{ZH} and σ_{vvH} depends on Vs

C. Grojean et al. arXiv:1711.03978

- \Box Two energy points (240 and 365 GeV) lift off the degeneracy between $\delta\kappa_Z$ and $\delta\kappa_\lambda$
 - * Precision on κ_{λ} with 2 IPs at the end of the FCC-ee (91+160+240+365 GeV)
 - Global EFT fit (model-independent): ±34% (3σ); in the SM: ±12%

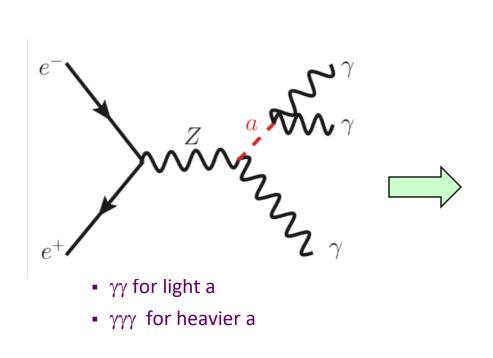

A. Blondel, P. Janot arXiv:1809.10041

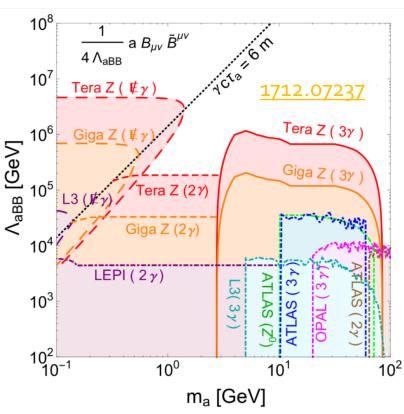
- * Precision on κ_{λ} with 4 IPs : ±21% (EFT fit) (5 σ) ; ±9% (SM fit)
 - 5σ discovery with 4 IPs instead of 2 (much less costly than 500 GeV upgrade)



Direct discoveries

- Discover right-handed neutrinos
 - □ vMSM : Complete particle spectrum with the missing three right-handed neutrinos


- ❖ Could explain everything: Dark matter (N₁), Baryon asymmetry, Neutrino masses
- □ Searched for in very rare $Z \rightarrow nN_{2,3}$ decays



Direct discoveries (cont'd)

- Discover the dark sector
 - □ A very-weakly-coupled window to the dark sector is through light "Axion-Like Particles" (ALPs)

Orders of magnitude of parameter space accessible at FCC-ee

Heavy flavour

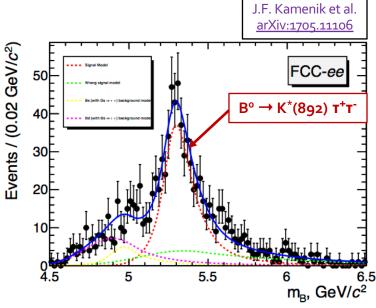

- ◆ Z run \Rightarrow 10¹² bb events 1.7×10¹¹ $\tau^+\tau^-$ events (significantly more than BelleII)
 - □ Higher energy, higher boost \Rightarrow better $e/\mu/\pi$ separation
 - □ lifetime, branching fractions, rare decays, test of Universality

Table 7.1: Expected production yields of heavy-flavoured particles at Belle II (50 ab⁻¹) and FCC-ee.

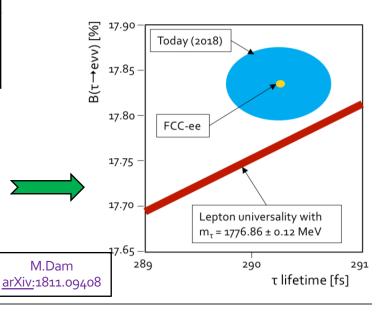
Particle production (10 ⁹)	B^0 / \overline{B}^0	B ⁺ / B ⁻	B^0_s / $\operatorname{\overline{B}}^0_{\operatorname{s}}$	Λ_b / $\overline{\Lambda}_b$	$c\overline{c}$	τ+τ-
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	1000	1000	250	250	550	170

□ Study of B decays and test of flavour universality

Decay mode	$B^0 \to K^*(892)e^+e^-$	$B^0 \to K^*(892)\tau^+\tau^-$	$B_s(B^0) \rightarrow \mu^+\mu^-$
Belle II	$\sim 2~000$	~ 10	n/a (5)
LHCb Run I	150	-	\sim 15 (–)
LHCb Upgrade	\sim 5000	-	$\sim 500 (50)$
FCC-ee	~ 200000	~ 1000	~1000 (100)

τ physics

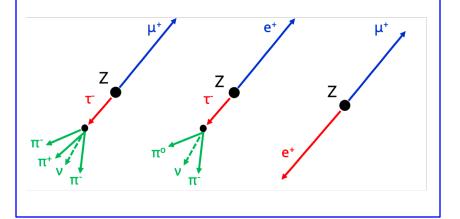
au properties and Universality

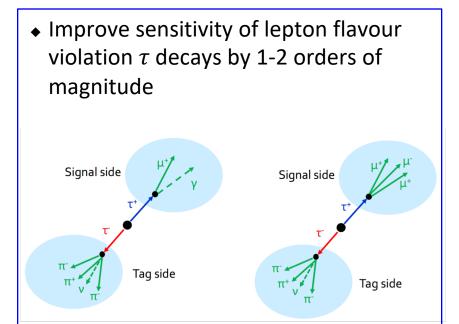

- τ branching fractions and lifetime provide strong test of Universality of the α ν_{α} CC coupling, α = e, μ , τ
 - Sensitive to light-heavy neutrino mixing
 - □ Need also (more) precise mass measurement

Observable	Observable Current precision		Possible syst.
m _τ [MeV]	1776.86 ± 0.12	0.004	0.1
τ _τ [fs] 290.3 ± 0.5 fs		0.001	0.04
Β(τ→eνν) [%]	17.82 ± 0.05	0.0001	0.000
Β(τ→μνν) [%]	17.39 ± 0.05	0.0001	0.003

M

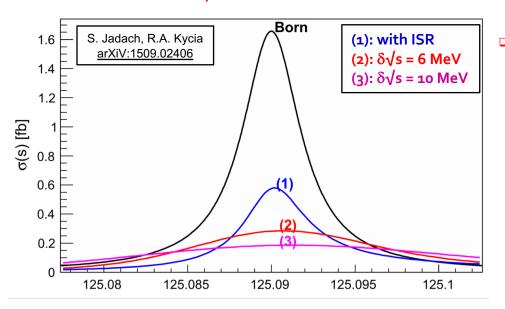
Quantity	Measurement	Current precision	FCC-ee precision	
g _μ /g _e	$\Gamma_{ au o\mu}/\Gamma_{ au o e}$	1.0018 ± 0.0014	Improvement by a	
g _τ /g _μ	$\Gamma_{ au o e}/\Gamma_{\mu o e}$	1.0030 ± 0.0015	factor 10 or more	


Visible Z decays	3 X 10 ¹²
$Z \rightarrow \tau^+\tau^-$	1.3 X 10 ¹¹
1 vs. 3 prongs	3.2 X 10 ¹⁰
3 vs. 3 prong	2.8x 10 ⁹
1 vs. 5 prong	2.1 X 10 ⁸
1 vs. 7 prong	< 67,000
1 vs 9 prong	?



τ physics

 Improve sensitivity of lepton flavour violation Z decays by 4 orders of magnitude


Decay	Present bound	FCC-ee sensitivity
$Z \rightarrow \mu e$	0.75×10^{-6}	$10^{-10} - 10^{-8}$
$Z \rightarrow \tau \mu$	12×10^{-6}	10^{-9}
$Z \to \tau e$	9.8×10^{-6}	10^{-9}
$\tau \to \mu \gamma$	4.4×10^{-8}	2×10^{-9}
$\tau \rightarrow 3\mu$	2.1×10^{-8}	10^{-10}

M.Dam <u>arXiv:</u>1811.09408

<u>FCC-ee is not only a Z, WW, Higgs and tt factory</u>. But also a factory of heavy flavour: b, τ ,...

And if there is time ...

- ♦ Spend few years at \sqrt{s} = 125.09 GeV with high luminosity
 - \square For s-channel production $e^+e^- \rightarrow H$ (a la muon collider, with 10⁴ higher lumi)

FCC-ee monochromatization setups

- Default: $\delta \sqrt{s} = 100 \text{ MeV}$, 25 ab⁻¹/year
 - No visible resonance
- Option 1: $\delta \sqrt{s} = 10 \text{ MeV}$, 7 ab⁻¹/year
 - $\sigma(e^+e^- \rightarrow H) \sim 100 \text{ ab}$
- Option 2: $\delta\sqrt{s} = 6$ MeV, 2 ab⁻¹/year
 - $\sigma(e^+e^- \rightarrow H) \sim 250 \text{ ab}$
- Backgrounds much larger than signal
 - $e^+e^- \rightarrow q\overline{q}$, $\tau\tau$, WW*, ZZ*, $\gamma\gamma$, ...
- □ Expected signal significance of ~0.4σ / $\sqrt{\text{year}}$ in both option 1 and option 2
 - * Set a electron Yukawa coupling upper limit : κ_e < 2.5 @ 95% C.L.
 - Reaches SM sensitivity after five years (or 2.5 years with 4 IPs)

D. d'Enterria arXiV:1701.02663

Unique opportunity to constrain first generation Yukawa's

Summary: FCC-ee physics potential (excerpt)

- ◆ EXPLORE the 10-100 TeV energy scale
 - □ With precision measurements of the properties of the Z, W, Higgs, and top particles
 - Up to 20-50-fold improved precision on ALL electroweak observables (EWPO)
 - m_z , m_W , m_{top} , Γ_z , $\sin^2 \theta_w^{eff}$, R_b , $\alpha_{OED}(m_z)$, $\alpha_s(m_z, m_W, m_\tau)$, top EW couplings ...
 - Up to 10-fold more precise and model-independent Higgs couplings measurements
- ◆ DISCOVER that the Standard Model does not fit
 - □ NEW PHYSICS! Pattern of deviations may point to the source.
- ◆ DISCOVER a violation of flavour conservation / universality
 - \Box Examples: $Z \rightarrow \tau \mu$ in 5×10^{12} Z decays; or $\tau \rightarrow \mu v / \tau \rightarrow ev$ in 2×10^{11} τ decays; ...
 - □ Also $B^0 \to K^{*0} \tau^+ \tau^-$ or $B_S \to \tau^+ \tau^-$ in 10^{12} bb events
- ◆ DISCOVER dark matter as invisible decays of Higgs or Z
 - Precise invisible width measurements
- ◆ DIRECT DISCOVERY of very-weakly-coupled particles
 - □ in the 5-100 GeV mass range, such as right-handed neutrinos, dark photons, ALPs, ...
 - Motivated by all measurements / searches at colliders (SM and "nothing else")

All 4 phases of the FCC-ee programme, Z, WW, H, and tt, are important for the physics potential

arXiv:1512.05544

arXiv:1603.06501

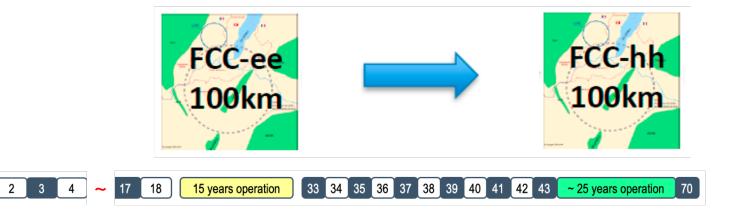
arXiv:1503.01325

Conclusions

The FCC CDR, released on 15/01/2019, demonstrates that:

- ◆ The FCC-ee design is robust and mature
 - □ accelerator with record luminosity performance at all four energy points (Z, WW, H, tt) and with moderate background levels
 - MDI including luminosity monitors
 - □ two detector designs (to be extended to four)
- ◆ With its 4 energy points, FCC-ee has an outstanding physics reach
 - □ as summarized on the previous slide
- ◆ FCC-ee and FCC-hh are highly synenergetic and complementary
 - □ The sequential implementation : FCC-ee → FCC-hh maximises the physics reach
 - □ FCC can serve High-Energy Physics in a cost effective manner throughout this century

FCC-ee can start seamlessly at the end of HL-LHC


The FCC integrated programme

Base the next generation of colliders on a proven model

◆ 27 km tunnel

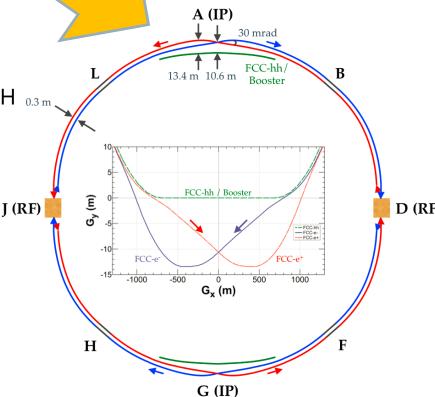
◆ The next step: 100 km tunnel

Thank you for you attention!

Acknowledgements:

- I would like to thank all of my FCC-ee colleagues who have contributed material to the CDR and to this talk
- Especially Patrick Janot and Alain Blondel from whom slides have been ruthlessly "stolen"

Extra Slides



FCC-ee baseline design choices

- Follows footprint of FCC-hh, except around IPs

- ~100 km to reach tt production
- Double ring (e+, e-) collider, multi-bunch
- Top-up injection for high efficiency
 - → high-energy injector in collider tunnel
- Crab-waist optics to maximize luminosity @Z, W, H 0.3 m 30 mrad crossing angle
- Asymmetric interaction region layout and optics Limit synchrotron radiation in the detector
- Two interaction points (IP) in A and G4 IPs to be studied -- significant layout changes
- 50 MW/beam Synchrotron Radiation power: at all energies
- Continuous E_{CM} calibration at Z and W (100 keV) based on resonant transverse depolarization polarimeter, wigglers, RF kicker

TLEP: arXiv:1208.0504

TLEP physics case: arXiv:1308.6176

The FCC CDR

First ideas in 2010-11. Study kicked off in 2014

```
CDR published on 15/01/2019 at <a href="http://fcc-cdr.web.cern.ch/">http://fcc-cdr.web.cern.ch/</a> (>1000 authors)
```

Vol.1: Physics Opportunities

Vol.2: The lepton collider (FCC-ee)

Vol.3: The hadron collider (FCC-hh) (includes e-h option)

Vol.4: HE-LHC

Common ~100 km infrastructure @ CERN

Civil engineering, electricity, cooling, ventilation, cryogenics

R&D for SC magnets (up to highest affordable field)

Staged approach for collider and physics

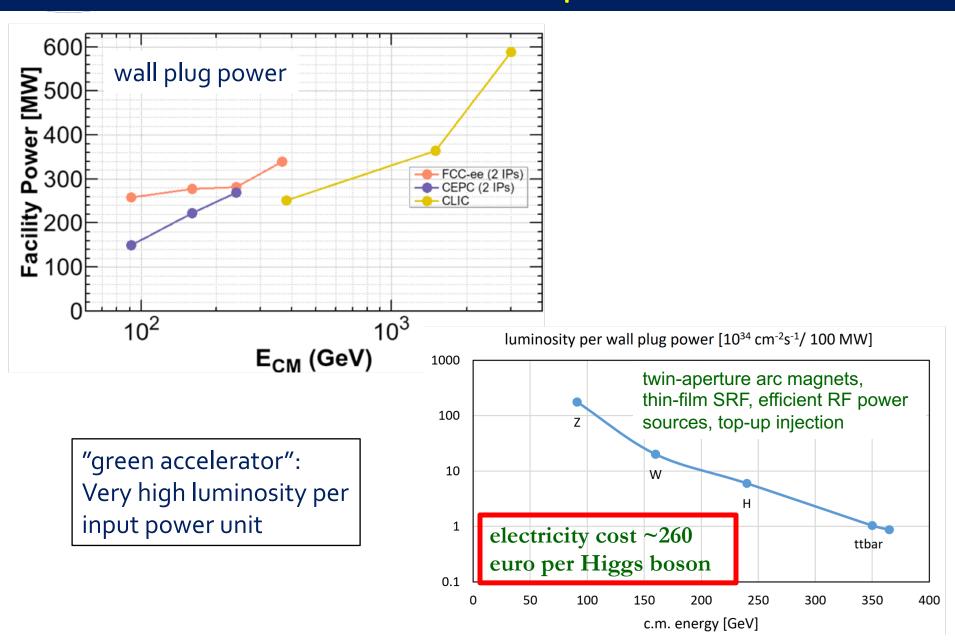
1st step: high-luminosity and precision e+e- collider (FCC-ee)

Phase A: $88 \rightarrow 240 \text{ GeV} (Z, W, \text{Higgs})$

Phase B: $345 \rightarrow 365$ GeV (Higgs, top) (significant RF upgrade)

2nd step: high-energy pp collider (FCC-hh, 100-150 TeV?) e-p option (FCC-eh)

At least 60 years of the most sensitive and versatile search for solutions to the mysteries of Universe (BAU, Dark matter, Neutrino masses, Flavour etc.)

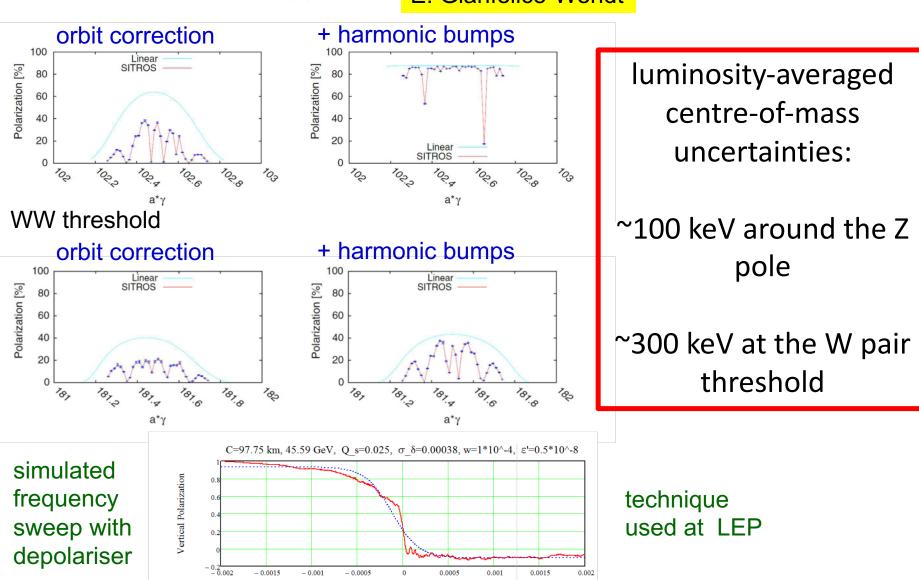

Baseline parameters

parameter		FCC-	·ee		LEP2
energy/beam [GeV]	45	80	120	182.5	105
bunches/beam	16640	2000	328	48	4
beam current [mA]	1390	147	29	5.4	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	230	28	8.5	1.5	0.0012
energy loss/turn [GeV]	0.036	0.34	1.72	9.2	3.34
total synchrotron power [MW]	100			22	
RF voltage [GV]	0.1	0.75	2.0	4+6.9	3.5
rms bunch length (SR,+BS) [mm]	3.5, 12	3.0, 6,0	3.2, 5.3	2.0, 2.5	12, 12
rms emittance $\varepsilon_{x,y}$ [nm, pm]	0.3, 1.0	0.8, 1.7	0.6, 1.3	1.5, 2.9	22, 250
longit. damping time [turns]	1273	236	70	20	31
crossing angle [mrad]	30			0	
beam lifetime (rad.B+BS) [min]	68	48	12	12	434

FCC-ee: 2 separate rings

LEP: Single beam pipe

Power consumption



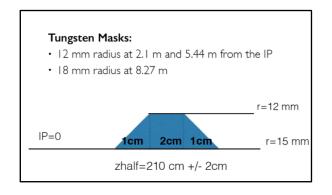
Polarisation and energy calibration

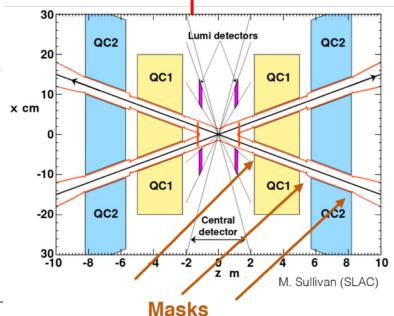
Mogens Dam / NBI Cor

E. Gianfelice-Wendt

Flipper frequency detuning: ν - γa

2019


35


Efficient masking against synchrotron radiation

	Energy (GeV)	Critical energy (keV)	number of bunches	Current (mA)	Incident γ/xing (500μm from tip)	Incoming on central pipe/xing	γ rate on central pipe (Hz)
tt+	182.5	113.4	33	5.41	3.32E+09	1195	1.18E+08
tt	175	100	40	6.4	3.06E+09	1040	1.25E+08
h	125	36.4	328	29	1.05E+09	10.3	1.01E+07
W	80	9.56	1300	147	6.11E+08	0.18	7.02E+05
Z	45.6	1.77	16640	1390	9.62E+07	1.92E-04	9.58E+03

rate of photons that strike the central pipe that come from the mask tip

- No SR from dipoles or from quads hits directly the central beam pipe (cylinder +/- 12.5 cm long, 1.5 cm radius)
- Non-Gaussian beam tails, considered out to +/-20 σ_x and +/-60 σ_y
- On-axis beam
- Quadrupole radiation that may strike mask surfaces included

